고급 컨텐츠

챗GPT로 심혈관질환 예측한다…국내 연구진, 입증 성공

헬시큐브 2024. 2. 16. 21:03

 

 

용인세브란스병원 배성아·윤덕용 교수 연구팀, 10년간 심혈관 질환 발생 예측 정확도 검증

연세대학교 의과대학 용인세브란스병원은 심장내과 배성아 교수, 의생명시스템정보학교실 윤덕용 교수 연구팀(공동 제1저자 한창호·김동원·김송수 연구원)이 챗GPT의 심혈관질환 예측 정확도를 입증했다고 16일 밝혔다.

최근 챗GPT 등의 대규모 언어 모델은 사회 전반에서 폭넓게 활용되고 있다. 특히 GPT-4 모델 기반의 챗GPT(이하 GPT-4)는 미국의 의사면허시험(USMLE)에서 90% 이상 정답률로 합격했을 뿐만 아니라 선천성 희귀병 진단 같은 의학 분야에서도 뛰어난 성능을 보였다.
 



연구팀은 대규모 환자 코호트 데이터인 영국 바이오뱅크(UK Biobank) 약 5만 명, 한국인유전체역학조사사업(KoGES)의 약 6000명 환자의 나이와 병력, 피검사 자료를 바탕으로 GPT-4의 심혈관질환 발생 예측 능력을 평가했다.

환자들의 10년간 심혈관질환 발생을 예측한 결과, GPT-4는 실제 심혈관계질환 예측에 널리 사용되는 모델인 프레이밍햄 위험 점수(Framingham Risk Score) 및 미국심장학회·심장협회(ACC·AHA)의 위험 점수와 유사한 성능을 나타냈다.



이번 분석에는 모델 정확도를 나타내는 통계기법인 '수신기 작동 특성 곡선 아래 면적(AUROC)'을 활용했다.

윤덕용 교수는 "GPT-4는 의료용으로 만들어지지 않았지만 대규모 학습 데이터로부터 적절한 의료 지식을 습득했다"며 "여러 심혈관 질환 위험 변수를 적절히 결합하면, 유의미한 결과를 도출할 수 있다는 가설을 확인했다"라고 설명했다.

배성아 교수는 "이번 연구는 최초로 대규모 언어 모델을 기반으로 한 심혈관 질환 예측의 정확성과 유용성을 입증했다는 점에서 의미가 있다"며 "향후 GPT-4 모델이 의료 분야에서 유망한 도구로 활용되기를 기대한다"라고 밝혔다.

이번 연구 결과는 '셀(Cell)'이 출간하는 국제학술지(iScience, IF 5.8)에 실렸다.


# 자료출처 : 더바이오
https://www.thebionews.net/news/articleView.html?idxno=3245

 

챗GPT로 심혈관질환 예측한다…국내 연구진, 입증 성공

[더바이오 음상준 기자] 연세대학교 의과대학 용인세브란스병원은 심장내과 배성아 교수, 의생명시스템정보학교실 윤덕용 교수 연구팀(공동 제1저자 한창호·김동원·김송수 연구원)이 챗GPT의

www.thebionews.net